


# **ExoCap™** Product Catalog

Research tools for extracellular vesicles



# **Table of contents**

| What are exosomes? · · · · P.2                                          |
|-------------------------------------------------------------------------|
| ExoCap™ Ultracentrifugation/Storage Booster (ExoCap™ USB) · · · · · P.3 |
| User Application Note · · · · P.5                                       |
| ExoCap™ Streptavidin Kit · · · · P.7                                    |
| ExoCap™ Streptavidin CD9/CD63/CD81 Set ·····P.9                         |
| ExoDiluent for Immunoassay ····· P.11                                   |
| ExoCap™ Nucleic Acid Elution Buffer · · · · P.12                        |
| Antibodies for human exosomal common markers ······P.13                 |
| Related Products · · · · P.15                                           |

# **Product lineup**

Antibodies for human exosomal markers P.13

Biotin, FITC, ALP-labeled antibodies are also available.

Dilution buffer for exosome immunoassay

ExoDiluent for Immunoassay P.11

· Anti-CD9 mAb

Anti-CD63 (LAMP-3) mAbAnti-CD81 (TAPA1) mAb

Improving exosome recovery rate from cell culture supernatant by ultracentrifugation

• ExoCap™ Ultracentrifugation/Storage Booster

Purer exosome Isolation for your target molecule and assay

• ExoCap™ Streptavidin Kit P.7

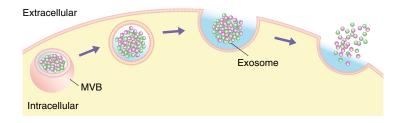
• ExoCap™ Ultracentrifugation/Storage Booster

P.3

Monoclonal antibodies for common exosomal markers

Nucleic acid isolation for exosomes

■ ExoCap™ Nucleic Acid Elution Buffer P.12


## What are exosomes?

Exosomes are a type of extracellular vesicles (EVs) with a diameter of 30-100 nm. Exosomes are released from multivesicular bodies (MVBs) in the process of vesicle trafficking.

A family of proteins with four transmembrane domains, called tetraspanins, are highly expressed on (the surface of) exosomes. Tetraspanins such as CD9 and CD63 are commonly used exosomal markers. Exosomes also contain other proteins, lipids, and nucleic acids. After being secreted from the cell, exosomes are transported by body fluids such as the blood, urine, and saliva, and taken up by adjacent or distant tissues. Hence, exosomes are suggested to mediate intercellular signaling.

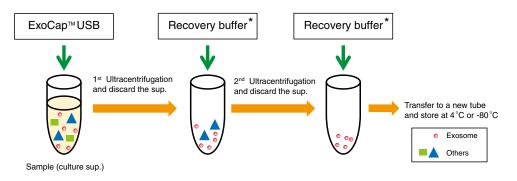
Due to the recent discovery that exosomes contain miRNAs, there is increasing interest in exosomal miRNA profiling to uncover cell-and tissue-specificity and association with disease. Currently, various studies are focused on exosomes in diseases such as cancer and aim to develop new diagnostic methods using molecules in exosomes, new drug targets, and an exosome-based drug delivery system.

MBL offers kits, antibodies, tools, and protocols for the isolation of exosomes as well as for characterization.



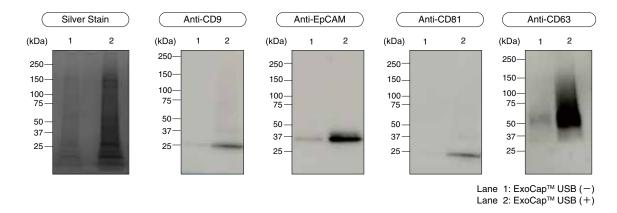
# Comparison of exosome isolation method

|              | Ultracentrifugation                                                                               | Affinity method (antibody)                                                    |
|--------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Advantage    | <ul><li>Suitable for large scale</li><li>Absence of selection bias of surface marker</li></ul>    | • Selectable of high purity of surface specific marker • High recovery rate   |
| Disadvantage | <ul><li>Expensive initial investment</li><li>Lower recovery rate</li><li>Non-selectable</li></ul> | Potential for selection bias of surface marker     Unsuitable for large scale |
| Usage        | Comprehensive Analysis                                                                            | • (Disease) specific marker analysis                                          |
| Product      | • ExoCap™ Ultracentrifugation/Storage Booster                                                     | • ExoCap™ Streptavidin Kit                                                    |

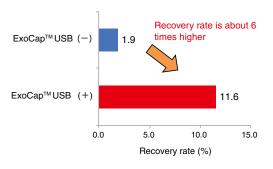

# ExoCap™ Ultracentrifugation/Storage Booster (ExoCap™ USB)

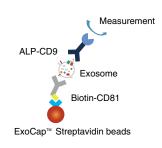
- O Improve the recovery rate of exosomes from cell culture supernatant using ultracentrifugation
- Increase stability using low temperature storage of purified exosomes

Exosomes and microvesicles are submicron extracellular vesicles that are secreted by various cell types. These vesicles contain various proteins, nucleic acids and molecular constituents to contribute to cell:cell communications. Currently, there are many different methods to collect exosomes. Ultracentrifugation is the most common isolation method used by most researchers. However, this method does have drawbacks, including reduced recovery ratio in cell culture supernatant. Another shortcoming involves storage temperature for isolated exosomes. Currently, storage is not stable at 4°C, which is a disadvantage for many researchers who may want to research the exosomes at a later time.


ExoCap™ Ultracentrifugation/Storage Booster reagent is available for efficient exosome purification by ultracentrifugation. It can be used as an additive to improve the recovery rate of exosomes in cultured supernatant. Furthermore, it can improve the storage stability of purified exosome under low temperature conditions.

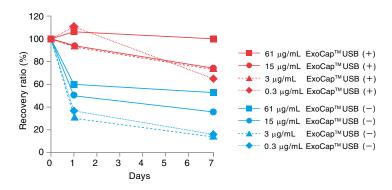
#### Procedure Summary





<sup>\*</sup>Recovery buffer : ExoCap™ USB : Ultrapure water=1 : 9

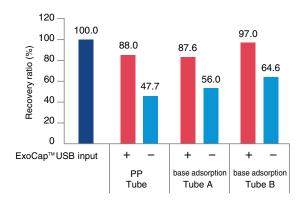
## Evaluation of the ExoCap™ USB effect for ultracentrifugation by Western blotting (Non-reduced)




Exosomes were isolated from the supernatant by ultracentrifugation with/without ExoCap<sup>TM</sup> USB. The intensity of the bands of exosome markers with the ExoCap<sup>TM</sup> USB were denser than those without ExoCap<sup>TM</sup> USB, as a robust signal is seen in Lane 2 for each marker. Exosome recovery was boosted by using the ExoCap<sup>TM</sup> USB.






Exosome recovery rate was improved with the addition of ExoCap™ USB. For beads, CLEIA (Chemiluminescent Enzyme Immuno Assay) ExoCap™ Streptavidin Kits, biotinylated CD81 antibody and alkaline phosphatase (ALP) labeled CD9 antibody were used.

# Stability for 7 days at 4°C in regular polypropylene tube



The effect of the storage stability duration using ExoCap™ USB was evaluated. Purified exosomes were stored for 7 days at 4°C and evaluated using CLEIA. When ExoCap™ USB was added, the recovery ratio was higher than those where ExoCap™ USB was not used for all concentrations.

# Stability at 4°C in various polypropylene tubes



The effect of the storage stability using ExoCap™ USB was evaluated. Purified exosomes were overnight at 4°C and evaluated using CLEIA. When ExoCap™ USB was added, the recovery ratio was higher than those where ExoCap™ USB was not used.

ExoCap™ USB User Application Note

din Kit

# Cellular uptake of fluorescent-labeled exosomes isolated by ultracentrifugation method with ExoCap™ USB

These data were kindly provided by Kyojiro Kawakami Ph.D., and Masafumi Ito M.D., Ph.D., (Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology.)

#### Experimental procedures

# 1. Isolation of exosomes

- Human castration-resistant prostate cancer PC-3 cells were cultured in Advanced RPMI 1640 Medium without FBS for 3 days.
- The cell culture supernatant was centrifuged at 2,000 x g for 10 minutes to eliminate cells followed by centrifugation at 12,000 x g for 30 minutes to discard cell debris. Then, the supernatant was filtered through 0.22  $\mu$ m PVDF membrane.

#### Ultracentrifugation method

- · Exosomes were pelleted by ultracentrifugation at 110,000 x g for 70 minutes and washed with PBS.
- · After washing, pellets were re-suspended in PBS.

# Ultracentrifugation method with

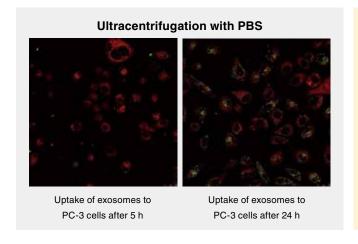
#### ExoCap™ USB

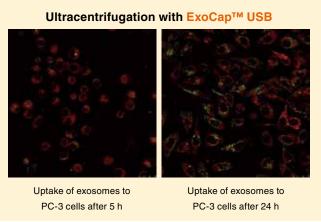
- Prior to ultracentrifugation, ExoCap<sup>™</sup> USB was added to the filtered sample at a final concentration of 10% according to the manufacture's instruction.
- · Ultracentrifugation was performed as described in the left column. Pellets were washed with and re-suspended in ExoCap™ USB containing buffer.

# 2. Fluorescent labeling of cultured cells

PC-3 cells were labeled by CellTracker™ Red (Thermo Fisher Scientific Inc.).

# 3. Fluorescent labeling of isolated exosomes and removal of excess fluorescent dyes


- Six micrograms of isolated exosomes were labeled by PKH67 (Sigma-Aldrich Co. LLC).
- Excess PKH67 that did not bind to exosomes was removed by ultrafiltration using Amicon<sup>®</sup> Ultra 50 kDa (Merck Millipore Corp.).
  - For recovery of exosomes from filters, PBS was used for exosomes isolated by ultracentrifugation with PBS, while ExoCap™ USB containing buffer was used for exosomes isolated by ultracentrifugation with ExoCap™ USB.
- The protein concentration and fluorescent intensity were measured in each sample.


## Exosome recovery after ultrafiltration

|                                           | Ultracentrifugation with PBS | Ultracentrifugation with ExoCap™ USB |
|-------------------------------------------|------------------------------|--------------------------------------|
| Recovery rate of protein (Relative value) | 63.6% (1.0)                  | 85.5% (1.3)                          |
| Fluorescent intensity (Relative value)    | 686,612 (1.0)                | 1,022,016 (1.5)                      |

#### Exosome uptake to cultured PC-3 cells

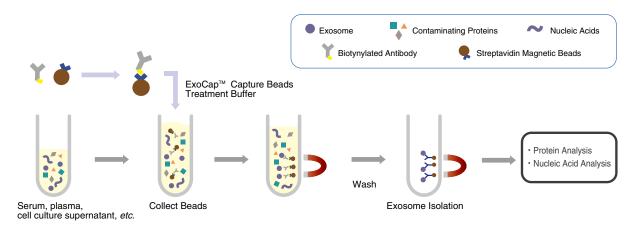
PKH67-labeled exosomes were added to the culture medium of PC-3 cells at a final concentration of 0.3  $\mu g/100~\mu L$ . The cellular uptake of labeled exosomes was examined by fluorescence microscopy.



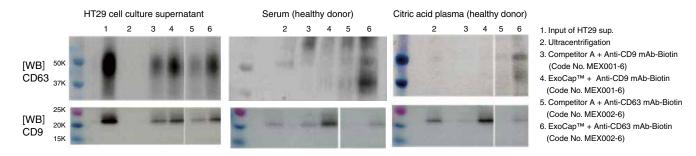


# Conclusions

- The recovery of exosomes after ultrafiltration was improved by using ExoCap™ USB.
- Exosomes isolated by ultracentrifugation using ExoCap™ USB can be used for PKH67 labeling and cellular uptake experiments.

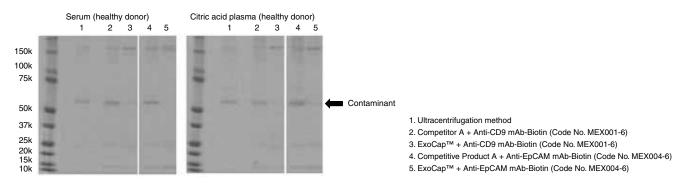

| Code No. | Product name                                | Size  |
|----------|---------------------------------------------|-------|
| MEX-USB  | ExoCap™ Ultracentrifugation/Storage Booster | 50 mL |

# ExoCap™ Streptavidin Kit


- O Flexible use of biotinylated antibodies to target exosomes
- O Lower non-specific binding by new "streptavidin magnetic beads" and buffers
- Better yield than competitor magnetic beads
- O Easy to use

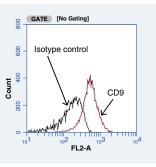
ExoCap<sup>™</sup> Streptavidin Kit is designed for customized isolation and analysis of exosomes or microvesicles, called Extracellular Vesicles (EVs), using the researcher's biotinylated molecules such as antibodies against exosome surface marker proteins. ExoCap<sup>™</sup> uses functionalized Magnosphere<sup>™</sup>, magnetic micro-particles coated with JSR Life Sciences proprietary hydrophilic polymer to decrease non-specific binding.

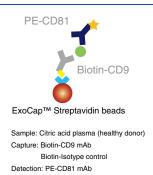
## **Procedure Summary**

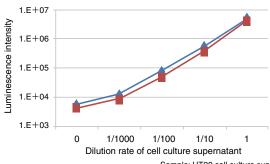



#### Western blotting




Exosomes were isolated from various samples and analyzed by Western blotting. In each sample, stronger signal was observed with ExoCap™ compared to the ultracentrifugation method and competitive product A.


#### CBB staining (Detection of contaminants)

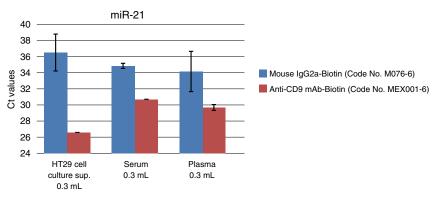



Non-specific protein binding was lower with the ExoCap™ Streptavidin Kit compared to the competitive product.

# Flow cytometry








Sample: HT29 cell culture supernatant Capture: Biotin-CD9 mAb (blue)
Biotin-CD63 mAb (red) Detection: ALP-CD81 mAb

ExoCap™ Streptavidin Kit shows the peak shift of flow cytometry.

ExoCap™ Streptavidin Kit and MBL antibodies are able to be used for CLEIA application.

# qRT-PCR



Exosomes were isolated using the ExoCap™ Streptavidin Kit (Code No. MEX-SA) and Anti-CD9 mAb-Biotin (Code No. MEX001-6) .Nucleic acids were purified using ExoCap™ Nucleic Acid Elution Buffer (Code No. MEX-E) and analyzed by qRT-PCR to detect miR-21.

# Kit contents



Streptavidin Magnetic Beads 2 mL

**CLEIA** 

- Washing/Dilution Buffer 60 mL
- Treatment Buffer 30 mL
- User manual

| Code No. | Product name             | Size  |
|----------|--------------------------|-------|
| MEX-SA   | ExoCap™ Streptavidin Kit | 1 Kit |

## Related Products

| Code No. | Product name                         | Clone   | Isotype                | Applications   | Cross reactivity | Size                      |
|----------|--------------------------------------|---------|------------------------|----------------|------------------|---------------------------|
| MEX001-6 | Anti-CD9 mAb-Biotin                  | A100-4  | Mouse $IgG2a_{\kappa}$ | WB, FCM, ELISA | Human            | 50 μg/50 μL               |
| MEX002-6 | Anti-CD63 (LAMP-3) mAb-Biotin        | C047-1  | Mouse $IgG2a_{\kappa}$ | WB, FCM, ELISA | Human            | 50 μg/50 μL               |
| MEX003-6 | Anti-CD81 (TAPA1) mAb-Biotin         | A103-10 | Mouse IgG2aκ           | WB, FCM, ELISA | Human            | 50 μg/50 μL               |
| MEX004-6 | Anti-CD326 (EpCAM) mAb-Biotin        | B8-4    | Mouse IgG1κ            | FCM, ELISA     | Human            | 50 μg/50 μL               |
| M075-6   | Mouse IgG1 (isotype control)-Biotin  | 2E12    | Mouse IgG1κ            | FCM            | -                | 50 μg/50 μL               |
| M076-6   | Mouse IgG2a (isotype control)-Biotin | 6H3     | Mouse IgG2a $\kappa$   | FCM            | -                | 50 μg/50 μL               |
| M077-6   | Mouse IgG2b (isotype control)-Biotin | 3D12    | Mouse IgG2a $\kappa$   | FCM            | -                | 50 μg/50 μL               |
| M078-6   | Mouse IgG3 (isotype control)-Biotin  | 6A3     | Mouse IgG3             | -              | -                | 50 μg/50 μL               |
| 3190     | Magnetic Rack                        | -       | -                      | -              | -                | 1 unit (1.5 mL x 8 tubes) |

WB: Western blotting , FCM: Flow cytometry

© ExoCap™ Streptavidin Kit and Biotinylated CD9/CD63/CD81 antibodies are aveilable in a package.

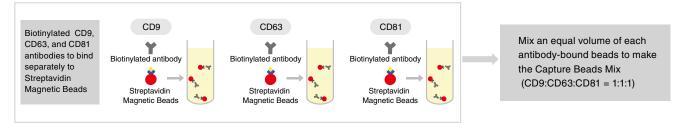
#### **Product contents**

## ExoCap™ Streptavidin Kit

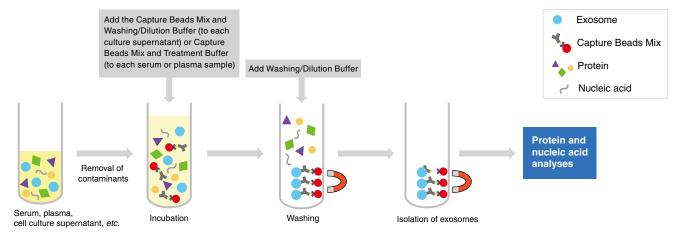
- Streptavidin Magnetic Beads 2 mL
- Washing/Dilution Buffer 60 mL
- Treatment Buffer 30 mL
- User manual

Biotinylated antibodies against the exosome surface antigens (CD9, CD63, and CD81)

#### Exosome CD9/CD63/CD81 mAb Set-Biotin


- Anti-CD9 mAb-Biotin (10 μg/50 μL)
- Anti-CD63 (LAMP-3) mAb-Biotin (10 μg/50 μL)
- Anti-CD81 (TAPA1) mAb-Biotin (10 μg/50 μL)
- User manual

Biotinylated antibodies to CD9, CD63, and CD81 are highly specific and perform excellently in exosome isolation by immunoprecipitation.


The ExoCap™ Streptavidin Kit consists of streptavidin-immobilized magnetic beads (Magnosphere™) and buffer solutions for capturing, washing, and extracting exosomes. The Magnosphere™ is coated with a JSR Life Sciences Corporation proprietary hydrophilic polymer to decrease non-specific binding. It has been used in in vitro diagnostic use. You can isolate exosomes in high-purity by using it together with our original biotinylated specific antibodies to CD9, CD63, and CD81.

#### **Procedure Summary**

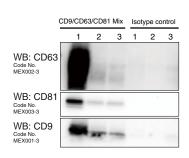
#### (1) Preparation of Capture Beads Mix



#### (2) Isolation of exosomes



ExoCap™ USB User Application ExoCap™ ExoCap™ Streptavidin Kit CD9/CD63/CD81 Set


oassay Acid Elution B

Plasma

qRT-PCR

26

(HT29)



Lane 1: HT-29 cell supernatant Lane 2: Serum healthy donor Lane 3: Citrate plasma healthy donor

After allowing the biotinylated CD9, CD63, and CD81 antibodies to bind separately to Streptavidin Magnetic Beads, an equal volume of each antibody-bound beads was mixed together (CD9/CD63/CD81 Mix). Using the mixed beads, exosomes were isolated from each sample and subjected to Western blot analysis.

After allowing the biotinylated CD9, CD63, and CD81 antibodies to bind separately to Streptavidin Magnetic Beads, an equal volume of each antibody-bound beads was mixed together (CD9/CD63/CD81 Mix). Using the mixed beads, exosomes were isolated from each sample. Nucleic acid was purified with ExoCap™ Nucleic Acid Elution Buffer (Code No. MEX-E) and subjected to qRT-PCR to detect miR-21.

Heparin

| Code No.  | Product name                           | Size  |
|-----------|----------------------------------------|-------|
| MEX-SA123 | ExoCap™ Streptavidin CD9/CD63/CD81 Set | 1 Set |

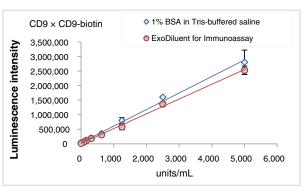
# **Related Products**

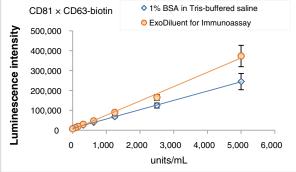
| Code No. | Product name                  | Clone   | Isotype                | Applications   | Cross reactivity | Size        |
|----------|-------------------------------|---------|------------------------|----------------|------------------|-------------|
| MEX-SA   | ExoCap™ Streptavidin Kit      | -       | -                      | -              | -                | 1 Kit       |
| MEX001-6 | Anti-CD9 mAb-Biotin           | A100-4  | Mouse IgG2aκ           | WB, FCM, ELISA | Human            | 50 μg/50 μL |
| MEX002-6 | Anti-CD63 (LAMP-3) mAb-Biotin | C047-1  | Mouse IgG2bκ           | WB, FCM, ELISA | Human            | 50 μg/50 μL |
| MEX003-6 | Anti-CD81 (TAPA1) mAb-Biotin  | A103-10 | Mouse $IgG2a_{\kappa}$ | WB, FCM, ELISA | Human            | 50 μg/50 μL |
| MEX004-6 | Anti-CD326 (EpCAM) mAb-Biotin | B8-4    | Mouse $IgG1_K$         | FCM, ELISA     | Human            | 50 μg/50 μL |

WB: Western blotting , FCM: Flow cytometry

■ CD9/CD63/CD81 mix

# **ExoDiluent for Immunoassay**


## O Improve the signal, signal-to-noise ratio and dilution linearity of ELISA/CLEIA using blood samples

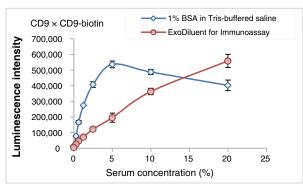

"ExoDiluent for Immunoassay" is an optimized dilution buffer to efficiently measure the microvesicle or exosome (sometimes called Extracellular Vesicle (EV)) levels in blood samples, especially serum.

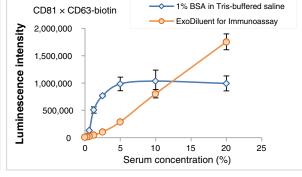
This reagent could result in improvement of the signal, signal-to-noise ratio and dilution linearity by attenuating the influence of blood-derived inhibitory components when the exosome/EV levels in serum are measured by immunoassay-based techniques such as sandwich ELISA (enzyme-linked immunosorbent assay) and CLEIA (chemiluminescence enzyme immunoassay) in combination with this diluent.

#### Standard/Calibration curve with HeLa-derived exosomes prepared by ultracentrifugation (UC)

\* This assay was done in duplicate and the data point represents mean and standard deviation







Capture Ab: Anti-CD9 mAb (Code No. MEX001-3) Detection Ab: Anti-CD9 mAb-Biotin (Code No. MEX001-6)

Capture Ab: Anti-CD81 mAb (Code No. MEX003-3) Detection Ab: Anti-CD63 mAb-Biotin (Code No. MEX002-6)

#### Detection of circulating exosomes/EVs in pooled human serum from healthy volunteers

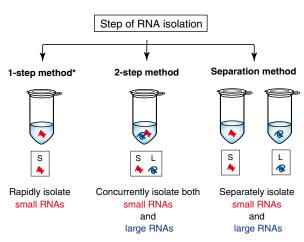
\* This assay was done in duplicate and the data point represents mean and standard deviation





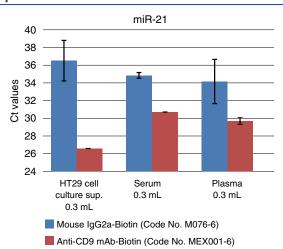
Capture Ab: Anti-CD9 mAb (Code No. MEX001-3) Detection Ab: Anti-CD9 mAb-Biotin (Code No. MEX001-6)

Capture Ab: Anti-CD81 mAb (Code No. MEX003-3) Detection Ab: Anti-CD63 mAb-Biotin (Code No. MEX002-6)


| Code No. | Product name               | Size  |
|----------|----------------------------|-------|
| MEX1001  | ExoDiluent for Immunoassay | 50 mL |

# ExoCap™ Nucleic Acid Elution Buffer

- © Enable to isolate nuclec acids from extracellular vesicles in one tube or in two tubes separately
- O High quality, high yield
- © Eco-friendly


ExoCap™ Nucleic Acid Elution Buffer is optimized to isolate nucleic acids from immunopurified materials, exosomes bound to ExoCap™ Capture Beads especially. This reagent is also available for Extracellular vesicles (EVs) research: all of the known EV isolation methods, such as ultracentrifugation, antibody/reagent-based precipitation and size exclusion, can be followed by this kit. The extraction procedure requires neither filtration step nor phenol-chloroform extraction step. This method allows us to achieve a high nucleic acids recovery rate with good quality. There are three methods to isolate large RNAs and/or small RNAs. Select the best way which is suitable for your following analysis.

## Step of RNA isolation



\*This is not suitable for isolating large RNAs because
the recovery for large RNAs is inefficient compared with the other 2 methods

## qRT-PCR

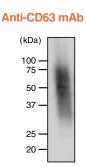


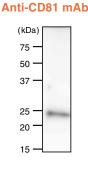
Exosomes were isolated using the ExoCap<sup>TM</sup> Streptavidin Kit (Code No. MEX-SA) and Anti-CD9 mAb-Biotin (Code No. MEX001-6) .Nucleic acids were purified using ExoCap<sup>TM</sup> Nucleic Acid Elution Buffer (Code No. MEX-E) and analyzed by qRT-PCR to detect miR-21.

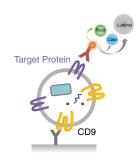
#### **Product contents**



- Nucleic Acid Elution Buffer 1 0.26 mL
- Nucleic Acid Elution Buffer 2 6 mL
- Nucleic Acid Elution Buffer 3 4 mL
- Nucleic Acid Elution Buffer 4 0.2 mL


| Code No. | Product name                        | Size      |
|----------|-------------------------------------|-----------|
| MEX-E    | ExoCap™ Nucleic Acid Elution Buffer | 20 assays |

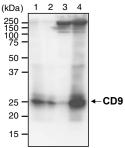

# **Antibodies for human exosomal common markers**


- © Biotinylated antibodies are against CD9, CD63, CD81, and EpCAM.
- © Use with the Exocap™ Streptavidin Kit for isolation of exosomes.
- O Also suitable for Flow cytometry, Sandwich ELISA and CLEIA.

# Western blotting (non-reducing condition)

# Anti-CD9 mAb (kDa) 50 37 25 15

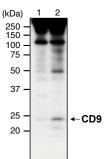






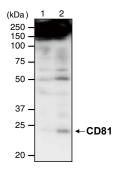

Sample: HeLa-derived exosomal lysate

## **Immunoprecipitation**


#### Anti-CD9 mAb






Sample: HeLa cell culture supernatant Lane 1: Exosome lysate (1 µg) Lane 2: Exosome lysate (0.3 µg) Lane 3: IP (isotype control) Lane 4: IP (Code No.MEX001-3)

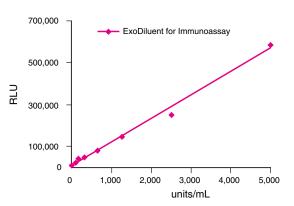
#### Anti-CD63 mAb



Sample: Human sera Lane 1: IP (isotype control) Lane 2: IP (Code No.MEX002-3)

#### Anti-CD81 mAb




Sample: Human sera Lane 1: IP (isotype control) Lane 2: IP (Code No.MEX003-3)

## **SWELISA**

#### 3,500,000 HeLa-derived exosome 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0 1,000 2,000 3,000 4,000 5,000 6,000 ng/mL

Sample: HeLa-derived exosome Capture Ab: Anti-CD63 mAb (Code No.MEX002-3) Detector Ab: Anti-CD9 mAb (Code No.MEX001-3)

# **SwCLEIA**



Sample: HT29-derived exosomes prepared by ultracentrifugation Capture Ab: Anti-CD9 mAb (MEX001-3) Detector Ab: Anti-EpCAM mAb-Biotin (MEX004-6)

13

# Product list

| Code No.  | Product name                  | Clone   | Isotype                               | Applications       | Cross reactivity          | Size                    |
|-----------|-------------------------------|---------|---------------------------------------|--------------------|---------------------------|-------------------------|
| MEX001-3  | Anti-CD9 mAb                  | A100-4  | Mouse IgG2aκ                          | WB, IP, FCM, ELISA | Human, Monkey             | 100 μg/100 μL           |
| MEX002-3  | Anti-CD63 (LAMP-3) mAb        | C047-1  | Mouse IgG2b $_{\ensuremath{\kappa}}$  | WB, IP, FCM, ELISA | Human, Monkey             | 100 $\mu g/100 \ \mu L$ |
| MEX003-3  | Anti-CD81 (TAPA1) mAb         | A103-10 | Mouse IgG2aκ                          | WB, IP, FCM, ELISA | Human, Hamster,<br>Monkey | 100 μg/100 μL           |
| MEX001-4  | Anti-CD9 mAb-FITC             | A100-4  | Mouse IgG2a $_{\mbox{\scriptsize K}}$ | WB, IP, FCM        | Human, Monkey             | $100~\mu g/100~\mu L$   |
| MEX002-4  | Anti-CD63 (LAMP-3) mAb-FITC   | C047-1  | Mouse IgG2b $\kappa$                  | WB, IP, FCM        | Human, Monkey             | 100 μg/100 μL           |
| MEX003-4  | Anti-CD81 (TAPA1) mAb-FITC    | A103-10 | Mouse $IgG2a_{\kappa}$                | WB, IP, FCM        | Human, Hamster,<br>Monkey | 100 μg/100 μL           |
| MEX001-6  | Anti-CD9 mAb-Biotin           | A100-4  | Mouse IgG2aκ                          | WB, FCM, ELISA     | Human                     | 50 μg/50 μL             |
| MEX002-6  | Anti-CD63 (LAMP-3) mAb-Biotin | C047-1  | Mouse IgG2bκ                          | WB, FCM, ELISA     | Human                     | 50 μg/50 μL             |
| MEX003-6  | Anti-CD81 (TAPA1) mAb-Biotin  | A103-10 | Mouse IgG2a $\kappa$                  | WB, FCM, ELISA     | Human                     | $50~\mu g/50~\mu L$     |
| MEX004-6  | Anti-CD326 (EpCAM) mAb-Biotin | B8-4    | Mouse IgG1 $_{\rm K}$                 | FCM, ELISA         | Human                     | 50 μg/50 μL             |
| MEX001-12 | Anti-CD9 mAb-ALP              | A100-4  | Mouse IgG2aκ                          | WB, IP, FCM        | Human                     | 50 μL                   |
| MEX002-12 | Anti-CD63 (LAMP-3) mAb-ALP    | C047-1  | Mouse IgG2bκ                          | WB, IP, FCM        | Human                     | 50 μL                   |
| MEX003-12 | Anti-CD81 (TAPA1) mAb-ALP     | A103-10 | Mouse IgG2aκ                          | WB, IP, FCM        | Human                     | 50 μL                   |

WB: Western blotting, FCM: Flow cytometry, IP: Immunoprecipitation

# **Related Products**

| Code No. | Product name                                                    | Clone      | Isotype               | Applications                    | Cross reactivity              | Size                              |
|----------|-----------------------------------------------------------------|------------|-----------------------|---------------------------------|-------------------------------|-----------------------------------|
| D131-3   | Anti-CD9 (Mouse) mAb                                            | JF9        | Rat IgG2b             | FCM                             | Mouse                         | 100 μg/100 μL                     |
| D263-3   | Anti-CD63 (LAMP-3) (Mouse) mAb                                  | R5G2       | Rat IgG2b             | WB, FCM, IC*                    | Mouse                         | 100 μg/100 μL                     |
| D269-3   | Anti-EpCAM (CD326) (Mouse) mAb                                  | 2-17-F1    | Rat IgG2a             | FCM                             | Mouse                         | 100 μL                            |
| D252-3   | Anti-CD9 (Human) mAb                                            | 10H6       | Mouse IgG1 $\kappa$   | WB, FCM                         | Human                         | 100 μg/100 μL                     |
| D281-3   | Anti-CD61 (GPIIIa) (Human) mAb                                  | T74        | Mouse IgG1 $\kappa$   | FCM                             | Human                         | $100~\mu g/100~\mu L$             |
| D281-A48 | Anti-CD61 (GPIIIa) (Human) mAb<br>-Alexa Fluor <sup>®</sup> 488 | T74        | Mouse IgG1κ           | FCM                             | Human                         | 50 μg/50 μL                       |
| D281-A64 | Anti-CD61 (GPIIIa) (Human) mAb<br>-Alexa Fluor <sup>®</sup> 647 | T74        | Mouse IgG1κ           | FCM                             | Human                         | 50 μg/50 μL                       |
| D161-3   | Anti-MFG-E8 (Mouse) mAb                                         | 2422       | Hamster IgG           | IP, FCM, IH*,<br>ELISA*, NT*    | Mouse                         | 100 μg/100 μL                     |
| D199-3   | Anti-MFG-E8 (Mouse) mAb                                         | 18A2-G10   | Hamster IgG           | WB, IH                          | Mouse                         | 100 μg/100 μL                     |
| K0142-3  | Anti-PSMA (Human) mAb                                           | 107-1A4    | Mouse IgG1            | FCM, Other*                     | Human                         | 100 μg/100 μL                     |
| K0142-4  | Anti-PSMA (Human) mAb-FITC                                      | 107-1A4    | Mouse IgG1            | FCM                             | Human                         | 100 μL                            |
| K0142-5  | Anti-PSMA (Human) mAb-PE                                        | 107-1A4    | Mouse IgG1            | FCM                             | Human                         | 1 mL (50tests)                    |
| RN028P   | Anti-EIF2C1 (AGO1) pAb                                          | polyclonal | Rabbit Ig (aff.)      | WB, IP, IC*, RIP                | Human, Mouse                  | 200 μL                            |
| RN028PW  | Anti-EIF2C1 (AGO1) pAb                                          | polyclonal | Rabbit Ig (aff.)      | WB, IP, IC*                     | Human, Mouse                  | 100 μL                            |
| RN003M   | Anti-EIF2C2 (AGO2) (Human) mAb                                  | 1B1-E2H5   | Mouse IgG2aλ          | WB, IP, RIP                     | Human                         | $200~\mu\text{g}/200~\mu\text{L}$ |
| RN005M   | Anti-EIF2C2 (AGO2) mAb                                          | 2A8        | Mouse $IgG1_{\kappa}$ | WB, IP, IC*, IH*, RIP,<br>CLIP* | Human, Mouse,<br>Rat, Hamster | 200 μg/200 μL                     |
| RN029PW  | Anti-EIF2C2 (AGO2) pAb                                          | polyclonal | Rabbit Ig (aff.)      | WB                              | Human, Mouse,<br>Rat          | 100 μL                            |
| RN003P   | Anti-TNRC6A (GW182) (Human) pAb                                 | polyclonal | Rabbit Ig (aff.)      | WB, IP, IC, RIP, CLIP           | Human                         | 200 μL                            |
| RN046PW  | Anti-SYNCRIP (HNRNPQ) pAb                                       | polyclonal | Rabbit Ig (aff.)      | WB, IP, RIP*, CLIP*             | Human, Mouse,<br>Rat, Hamster | 100 μL                            |
| RN015P   | Anti-YBX1 (Human) pAb                                           | polyclonal | Rabbit Ig (aff.)      | WB, IP, RIP*, CLIP*             | Human, Mouse,<br>Rat, Hamster | 200 μL                            |

 $WB: Western \ blotting, FCM: Flow \ cytometry, \ IP: Immunoprecipitation, \ IC: Immunocytochemistry, \ IH: Immunohistochemistry, \ RIP: \ RNP \ Immunoprecipitation$ CLIP: Cross-linked Immunoprecipitation, NT: Neutralization

# Isotype control

| Code No. | Product name                         | Clone | Isotype                               | Size            |
|----------|--------------------------------------|-------|---------------------------------------|-----------------|
| M075-3   | Mouse IgG1 (isotype control)         | 2E12  | Mouse $lgG1_{\kappa}$                 | 100 μg/100 μL   |
| M076-3   | Mouse IgG2a (isotype control)        | 6H3   | Mouse $IgG2a_{\kappa}$                | 100 μg/100 μL   |
| M077-3   | Mouse IgG2b (isotype control)        | 3D12  | Mouse IgG2bκ                          | 100 μg/100 μL   |
| M078-3   | Mouse IgG3 (isotype control)         | 6A3   | Mouse IgG3                            | 100 μg/100 μL   |
| M075-4   | Mouse IgG1 (isotype control)-FITC    | 2E12  | Mouse IgG1κ                           | 50 μg/1 mL      |
| M076-4   | Mouse IgG2a (isotype control)-FITC   | 6H3   | Mouse IgG2a $_{\mbox{\scriptsize K}}$ | $50~\mu g/1~mL$ |
| M077-4   | Mouse IgG2b (isotype control)-FITC   | 3D12  | Mouse IgG2b $_{\ensuremath{\kappa}}$  | $50~\mu g/1~mL$ |
| M078-4   | Mouse IgG3 (isotype control)-FITC    | 6A3   | Mouse IgG3                            | 50 μg/1 mL      |
| M075-6   | Mouse IgG1 (isotype control)-Biotin  | 2E12  | Mouse IgG1κ                           | 50 μg/50 μL     |
| M076-6   | Mouse IgG2a (isotype control)-Biotin | 6H3   | Mouse IgG2aκ                          | 50 μg/50 μL     |
| M077-6   | Mouse IgG2b (isotype control)-Biotin | 3D12  | Mouse IgG2bκ                          | 50 μg/50 μL     |
| M078-6   | Mouse IgG3 (isotype control)-Biotin  | 6A3   | Mouse IgG3                            | 50 μg/50 μL     |

Copyright © 2017 MEDICAL & BIOLOGICAL LABORATORIES CO., LTD. All Rights Reserved.

2017.10 149106



MEDICAL & BIOLOGICAL LABORATORIES CO., LTD.

KDX Nagoya Sakae Bldg. 10F 4-5-3 Sakae, Naka-ku, Nagoya, Aichi 460-0008, JAPAN TEL: +81-52-238-1904 FAX: +81-52-238-1441

E-mail: support@mbl.co.jp URL: http://ruo.mbl.co.jp/g/

<sup>\*:</sup> The use is reported in a research article (Not tested by MBL). Please check the data sheet for detailed information.